Mature osteoclast—derived apoptotic bodies promote osteogenic differentiation via
RANKL-mediated reverse signaling
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Supplementary Methods and Materials
Cell culture and Reagents

MC3T3-E1l cell line was obtained from American Type Culture Collection (ATCC).
Recombinant Mouse RANKL and Recombinant Mouse M-CSF were purchased from R&D
Systems (Minneapolis, MN). Antibodies against H2B (sc-515808), H3 (sc-56616), C3B
(sc-28294), C1QC (sc-365301), CD9 (sc-13118), ACTB (sc-58673), ALP (sc-365765),
COL1AT (sc-293182), Osterix (sc-393060), RUNX2 (sc-101145), RANK (sc-59981), and
GAPDH (sc-32233) were purchased from Santa Cruz Biotechnology (Santa Cruz). Antibody
against p-PI3K (ab182651), PI3K(ab32089), p-Akt (ab81283), Akt (abl179463), p-S6K
(ab59208), S6K (ab32529) was purchased from ABcam (Cambridge, UK). Cell Counting
Kit-8 was obtained from Dojindo Molecular Technologies (Dojindo, Japan). TRAP stain kit
was obtained from Sigma-Aldrich (NY, USA). Membrane dye Dil was obtained from Life
Technologies. Alpha minimal essential Medium (a-MEM) and fetal bovine serum (FBS) was
purchased from Gibco (life technologies, USA). Penicillin-streptomycin solution was

obtained from Hyclone (Thermo Scientific, USA).

Cell viability assessment

Primary bone marrow monocytes/macrophages (BMMs) were seeded (2 x 10° per well)
into 96-well plates and were cultured overnight. Cells were induced with M-CSF (50 ng/ml)
and RANKL (100 ng/ml) for obtaining pOCs and mOC:s. Cell proliferation and viability were

evaluated by Cell Counting Kit-8 (CCK8, Dojindo, Japan) reagent at Oh, 24h, 48h, and 72 h



according to the manufacturers’ instructions. The absorbency of cells was measured using a
96-well plate reader at 450 nm. Wells containing the CCK-8 reagent with no cells were used

as the blank control.

Microscopy and confocal microscopy

For light microscopy, cell morphology and state were observed by Olympus IX70 Inverted
Microscope during cultured in 96-well plates or after trap staining. For confocal microscopy,
cells were co-incubated with ABs in laser confocal dishes and analysis on Zeiss LSM800
using a 100x oil-immersion lens (excitation at 488, 568, 647 nm, detection at 650 nm, shown
red and 488 nm, shown green). For analysis of engulfment, AnnexinV-FITC stained ABs

were co-incubated with MC3T3-E1 (cultured for 24h), which were stained by cell tracker red.



A CT ALN

S
< Cm : O CT AN
4h 15,
S k.
2 101
: X,
i
C 4
8h s = ﬁﬂ |“
b ) O
oL}
4h 8h

Supplementary Figure S1. a BMMs were induced with ALN (500 uM) and observed using
light microscopy 4 and 8 hours after induction. Bar represents 20 pm. b Quantification of
subcellular fragment counts. The data in the figures represent the averages + SD. Significant

differences are indicated as * (p < 0.05) or ** (p < 0.01) paired using Student’s t test unless

otherwise specified.
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Supplementary Figure S2. a pOCs were induced with ALN (500 uM) and observed using
light microscopy 4 and 8 hours after induction. Bar represents 20 pum. b Quantification of
subcellular fragment counts. The data in the figures represent the averages + SD. Significant

differences are indicated as * (p < 0.05) or ** (p < 0.01) paired using Student’s t test unless

otherwise specified.
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Supplementary Figure S3. Subcellular fragments containing ABs and MVs+Exos separated

from apoptotic and viable cells by flow cytometry. Dot plots show FSC/SSC properties of
apoptotic cells and subcellular fragments (circled population) after induction of apoptosis by

ALN (500 uM). Subcellular fragments were quantified after the indicated incubation periods
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Supplementary Figure S4. Quantification of ALP activity and Alizarin red stain of MSCs
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treated with osteogenic factors in indicated groups. The data in the figures represent the
averages + SD. Significant differences are indicated as * (p < 0.05) or ** (p < 0.01) paired

using Student’s t test unless otherwise specified.



Supplementary Figure S5. Cluster heatmap showing all 14,196 differentially expressed

mRNAs in BMM-ABs (0h), pOC-ABs (24h) and mOC-ABs (72h).
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Supplementary Figure S6. Cluster heatmaps showing top 20 up and down regulated

mRNAs in (A) BMM-ABs (0Oh) and pOC-ABs (24h), (B) BMM-ABs (0h) and mOC-ABs

(72h), (C) pOC-ABs (24h) and mOC-ABs (72h).
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Supplementary Figure S7. GO analysis of differentially expressed mRNAs in three groups.
Top 10 BP, CC and MF terms for the differentially expressed mRNAs in (A) pOC-ABs and

BMM-ABs, (B) mOC-ABs and BMM-ABs, (C) mOC-ABs and pOC-AB:s.
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Supplementary Figure S8. KEGG enrichment analysis of differentially expressed mRNAs
in three groups. TOP 30 KEGG pathway terms of differentially expressed mRNAs in (A)

pOC-ABs and BMM-ABs, (B) mOC-ABs and BMM-ABs, (C) mOC-ABs and pOC-ABs.



Supplementary Table S1. Primer sequences for gPCR

Genes Forward Reverse Tm (°C)
RUNX2 5'-ATGCTTCATTCGCCTCACAAA-3' 5'-GCACTCACTGACTCGGTTGG-3' 61
ALPL 5'-AACCCAGACACAAGCATTCC-3' 5'-GAGACATTTTCCCGTTCACC-3' 60
COL1A1 5'-GCTCCTCTTAGGGGCCACT-3' 5'-ATTGGGGACCCTTAGGCCAT-3' 62
Sp7 5'-AAGTCTCAAGGTTATAGGGACGG-3' 5'-CCATGCTTGTCTGGGTATAGTGT-3' 62
GAPDH 5-TGGATTTGGACGCATTGGTC-3' S-TTTGCACTGGTACGTGTTGAT-3' 60

B-actin

5'-TCCCTGTATGCCTCTG-3'

5'-ATGTCACGCACGATTT-3'

61




